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Abstract Cortical neurons are massively connected with

other cortical and subcortical cells, and they receive

synaptic inputs from multiple sources. To explore the

basis of how interconnected cortical cells are locally

activated by such inputs, we theoretically analyze the

local excitation patterns elicited by external input stimuli

by using a one-dimensional neural field model. We

examine the conditions for the existence and stability of

the local excitation solutions under arbitrary time-invari-

ant inputs and establish a graphic analysis method that

can detect all steady local excitation solutions and

examine their stability. We apply this method to a case

where a pair of supra- and subthreshold stimuli are

applied to nearby positions in the field. The results

demonstrate that there can exist bistable local excitation

solutions with different lengths and that the local excita-

tion exhibits hysteretic behavior when the relative

distance between the two stimuli is altered.

Keywords Neural field � Local excitation �
Pattern formation � Neuroscience

1 Introduction

Local cortical areas are massively connected with other

brain structures, including both cortical and subcortical

areas, and neuronal information processing in the cortex is

performed by receiving synaptic inputs from multiple

sources. In this study, we thus consider the firing response

of the cortical neurons that receive input stimuli, by using a

neural field model that describes the large-scale dynamics

of the densely distributed cortical neurons.

Pattern formation in neural fields is a research topic

receiving ongoing interest, and a number of studies have

analyzed neural field dynamics from various aspects (e.g.,

[1–17]). These studies have explored the existence and

stability of characteristic solutions such as local excitations

or ‘‘bumps’’ [1–9], traveling fronts or waves [1, 2, 7, 10–

12], as well as the global convergence when the system

starts from arbitrary initial conditions [13–15] (for reviews,

see [16, 17]). While many studies have concerned pattern

formation in the absence of external inputs or with constant

or unimodal inputs, Wilson and Cowan [1] and Enculescu

and Bestehorn [6] have examined how two adjacent input

stimuli can be fused into localized activity and have found

the existence of spatial hysteresis in pattern dynamics when

the two inputs are moved slowly. Their results have shown

that some type of hysteresis observed in the sensory per-

ception [18] could probably arise from the interaction of

sensory stimuli with intracortical excitation and inhibition.

However, it is still not fully understood how various sen-

sory stimuli to the cortex can be fused into localized

activity via the interaction between neurons.
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Therefore, in the present study, we theoretically ana-

lyze how external input stimuli can yield localized

excitation by using the Amari-type one-dimensional neu-

ral field model [2]. We provide the conditions for the

existence and stability of local excitation solutions and

propose a graphic analysis method that can detect the

steady local excitation solutions and examine their sta-

bility. The paper is organized as follows. In Sects. 2 and

3, we analyze the conditions for the existence and sta-

bility of localized solutions, respectively. In Sect. 4, we

show that these conditions are described as the relation-

ships between several characteristic functions and propose

the graphic analysis method. In Sect. 5, we apply this

method to a neural field receiving a pair of supra- and

subthreshold stimuli and demonstrate that two stable local

excitation solutions can coexist. It is also shown here that

when the distance between the two stimuli are altered, we

can find hysteretic pattern dynamics with respect to the

length of local excitation, which is different from the

hysteresis demonstrated in previous studies [1, 6]. We

conclude in Sect. 6 with a discussion.

2 Local excitation solutions in neural fields

We consider the following one-dimensional neural field

model [2].

s
ouðx; tÞ

ot
¼ �uðx; tÞ þ

Z
wðx� x0Þf uðx0; tÞ½ �dx0

þ SðxÞ � h; ð1Þ

where u(x) is the average membrane potential of neurons at

position x, s is the time constant, w(x - x0) is the con-

nectivity function from neurons at position x0 to ones at

position x, f(u) is the output function, and S(x) is the time-

invariant input stimuli applied to the neurons at position x,

and -h(h [ 0) is the resting potential.

We consider the field with symmetric connections that are

excitatory for proximate neurons so that w(x) satisfies

w(x) = w(-x) and w(0) [ 0. Unless otherwise stated, f(u) is

assumed to be a step function, i.e., f(u) = 0 for uB 0 and

f(u) = 1 otherwise. As in Amari [2], let R[u] = {x|u(x) [ 0}

be the excited region. Then, a local excitation of length

x2 - x1 is defined as the state of the membrane potential

distribution with R[u] = (x1, x2).

We first examine the conditions where a steady local

excitation solution with R[u] = (x1
*, x2

*) can exist when

arbitrary stationary input S(x) is given. We introduce two

characteristic functions: WðxÞ ¼
R x

0
wðx0Þdx0 and GðxÞ �

G½x; x�1; x
�
2� ¼ �Wðx� x�1Þ þWðx� x�2Þ þ h. Then, we see

W(0) = 0 and W(x) = -W(-x). We can also find the

relation of the two functions:

Gðx�1Þ ¼ Gðx�2Þ ¼ �Wðx�2 � x�1Þ þ h: ð2Þ

Since qu/qt = 0 in (1) at equilibrium, the membrane

potential distribution at the steady state is given as

�uðxÞ ¼
R

R½�u� wðx� x0Þdx0 þ SðxÞ � h. Hence, the steady

solution of local excitation with R½u� ¼ ðx�1; x�2Þ is

�uðxÞ ¼ Wðx� x�1Þ �Wðx� x�2Þ þ SðxÞ � h: ð3Þ

The conditions for the existence of steady local excitation

solutions are given by the following theorem:

Theorem 1 There exists a steady solution of local exci-

tation with R½u� ¼ ðx�1; x�2Þ if and only if S(x) and G(x)

satisfy the following three conditions:

steady condition 1

SðxÞ ¼ GðxÞ; if x ¼ x�1; x
�
2; ð4Þ

steady condition 2

SðxÞ[ GðxÞ; if x�1\x\x�2; ð5Þ

steady condition 3

SðxÞ\GðxÞ; if x\x�1; x
�
2\x: ð6Þ

Proof of Theorem 1 If there is a steady local excitation

solution with R½u� ¼ ðx�1; x�2Þ, �uðxÞ in (3) satisfies �uðx�1Þ ¼
�uðx�2Þ ¼ 0. This yields Sðx�1Þ ¼ Sðx�2Þ ¼ �Wðx�2 � x�1Þ þ h,

so that we obtain (4) by using (2). �uðxÞ also satisfies

�uðxÞ[ 0 for x�1\x\x�2 and �uðxÞ[ 0 for x\x�1; x
�
2\x.

These relations can be transformed into (5) and (6).

On the contrary, if (4)–(6) hold, we can prove that

u(x) = S(x) - G(x) is a required steady local excitation

solution for R½u� ¼ ðx�1; x�2Þ: h

The theorem indicates that relation between the external

input S(x) and the characteristic function G(x) determines

whether a steady local excitation solution exists. For the

existence of a steady local excitation solution, S(x) must be

larger than G(x) only inside the boundaries of the local

excitation, and smaller outside the excitation. The proof

of the theorem shows that the physical meaning of the

characteristic function G(x) is understood such that

u(x) = S(x) - G(x) becomes a steady membrane potential

distribution for the local excitation. We refer to (4), (5), and

(6) as the steady conditions 1, 2, and 3, respectively. This

theorem is used to find steady solutions of local excitation

below in the discussion about the graphic analysis method.

3 Stability of local excitation solutions

This section examines the stability of a steady local exci-

tation solution with R½u� ¼ ðx�1; x�2Þ. We reduce the neural

field equation (1) to an ordinary differential equation with

respect to the boundaries of the excited region by the

approach similar to [2, 5].
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Assume that the membrane potential distribution with

R½u� ¼ ðx1; x2Þ at time t has changed to that of

R[u] = (x1 ? dx1, x2 ? dx2) at time t ? dt. Then, we can

obtain the motion of the boundaries of the excited region

just like [2]:

dxi

dt
¼ � 1

suxi
Wðx2 � x1Þ þ SðxiÞ � hf g; i ¼ 1; 2; ð7Þ

where uxi denotes qu(xi,t)/qx. Let us consider small

perturbations ~xi and ~uxi in xi and uxi, respectively. Then,

if we substitute xi ¼ x�i þ ~xi and uxi ¼ u�xi þ ~uxi into the

above equation and neglect the second and higher order

terms of the perturbations, we can obtain a linear

differential equation with respect to the boundaries x1, x2

of the excited region:

d

dt

~x1

~x2

" #
¼1

s

fwða�Þ�S�x1g=u�x1 �wða�Þ=u�x1

wða�Þ=u�x2 �fwða�ÞþS�x2g=u�x2

" #
~x1

~x2

" #
;

ð8Þ

where a� �x�2�x�1 is the length of the steady local

excitation. u�xi�d�uðx�i Þ=dx and S�xi�dSðx�i Þ=dx denote the

gradients of the steady membrane potential distribution and

the external inputs. The characteristic equation of the

matrix in (8) is given by k2þBkþC¼0, where

B ¼ 1

s
�wða�Þ � S�x1

u�x1

þ wða�Þ þ S�x2

u�x2

� �
; ð9Þ

C ¼ 1

s2u�x1u�x2

wða�ÞðS�x1 � S�x2Þ þ S�x1S�x2

� �
: ð10Þ

By analyzing the eigenvalues of the characteristic equation,

we obtain the following theorem:

Theorem 2 A steady solution of local excitation with

R½u� ¼ ðx�1; x�2Þ is

(1) stable if S�x1 [ S�x2 and wða�Þ S�x1 � S�x2

� �
þ S�x1S�x2\0,

(2) unstable if S�x1\S�x2 or wða�Þ S�x1 � S�x2

� �
þ S�x1S�x2 [ 0.

The proof is given in Appendix A. It should be noted that,

in the limit of S�x1; S�x2 ! 0 with S�x1 [ S�x2, the theorem

agrees with the stability conditions for homogeneous

inputs [2].

4 Graphic analysis method

For the practical purpose, what matters is how we can

actually find the stable and unstable steady solutions. Here

we construct a graphic analysis method to find the steady

local excitation solutions and examine their stability from

the intersections and gradients of several characteristic

curves.

4.1 Description of the steady condition 1

by the characteristic curves

Definition 1 We define the a� Ŝ curve to be a set of

points ( a; Ŝ) in the plane spanned by a and Ŝ such that

there exist x1 and x2 satisfying the three conditions:

(1) x1 \ x2, (2) Sðx1Þ ¼ Sðx2Þ ¼ Ŝ, and (3) a = x2 - x1.

Figure 1a, b illustrates a simple example of S(x) and the

corresponding a� Ŝ curve. Note that the function S(x) is

arbitrary and does not need to be unimodal as in the figure.

The method for plotting the a� Ŝ curve is not instructive, but

rather complex, so that the method is given in Appendix B.

Let us define another characteristic function Y(a) to be

YðaÞ ¼ h�WðaÞ: ð11Þ

Then, the following theorem shows that, if the a� Ŝ

curve is plotted with function Y(a) on the same plane as

shown in Fig. 1c, an intersection of both curves corresponds

to a solution of the steady condition 1 in Theorem 1.

Theorem 3 The steady condition 1 holds for

x�1; x�2 ðx�1\ x�2Þ if and only if Sðx�1Þ ¼ Sðx�2Þ and the point

(a�; S�) with a� ¼ x�2 � x�1 and S� ¼ Sðx�1Þ ¼ Sðx�2Þ lies on

an intersection of the a� Ŝ curve with Y(a).

Proof of Theorem 3 When the steady condition 1 holds,

Sðx�1Þ ¼ Sðx�2Þ also holds from (2). Thus, from Definition 1,

the point (a*, S*) with a� ¼ x�2 � x�1 and S� ¼ Sðx�1Þ ¼ Sðx�2Þ
lies on the a� Ŝ curve. We can also find the following

relation by using (2) and the steady condition 1:

Yða�Þ ¼ h�Wðx�2 � x�1Þ ¼ S�; ð12Þ

so that the point (a*, S*) lies on the curve Y(a). Hence, the

point (a*, S*) lies on an intersection of the a� Ŝ curve and

Y(a).

On the contrary, if Sðx�1Þ ¼ Sðx�2Þ holds and the point (a*,

S*) with a� ¼ x�2 � x�1 and S� ¼ Sðx�1Þ ¼ Sðx�2Þ lies on an

intersection of the two curves, then (12) holds so that we

obtain the steady condition 1 from (2). h

Theorem 3 will be used below for finding the solutions

satisfying the steady condition 1 from the intersections of

the a� Ŝ curve with Y(a). Note that, since the steady

conditions 2 and 3 are not taken into account in Theorem 3,

relation between the two curves are not enough to find the

steady local excitation solutions. However, the gradient of

the a� Ŝ curve and Y(a) gives another useful information

about the stability condition as follows.

4.2 Description of the stability condition

by the characteristic curves

Let us assume that a local excitation with R½u� ¼ ðx�1; x�2Þ
exists. Then, we can find from Theorem 1 that the three
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steady conditions are satisfied, and from Theorem 3 that

the point (a*, S*) with a� ¼ x�2 � x�1 and S� ¼ Sðx�1Þ ¼ Sðx�2Þ
lies on an intersection of the a� Ŝ curve and Y(a). As

shown in Fig. 1c, we define a�ð� dŜða�Þ=daÞ to be the

gradient of the a� Ŝ curve at the intersection.

Now we explore how the gradients of the characteristic

curves dYða�Þ=da and a* are related to the stability of the

local excitation solutions. Assume that x1, x2 (x1 \ x2), a,

and Ŝ, and their perturbations satisfy

Sðx1Þ ¼ Sðx2Þ ¼ Ŝ; ð13Þ

Sðx1 þ Dx1Þ ¼ Sðx2 þ Dx2Þ ¼ Ŝþ DS; ð14Þ
a ¼ x2 � x1; ð15Þ
aþ Da ¼ ðx2 þ Dx2Þ � ðx1 þ Dx1Þ: ð16Þ

Figure 2 shows the relationship of these variables with S(x)

and the corresponding a� Ŝ curve. The above equations

mean that both points ða; ŜÞ and ðaþ Da; Ŝþ DSÞ lie on

the a� Ŝ curve (Fig. 2b). The gradient of the line

connecting the two points is given by

DS

Da
¼ DS

Dx2 � Dx1

¼ DS

Dx1

� DS

Dx2

�
DS

Dx1

� DS

Dx2

� �
: ð17Þ

Hence, by taking the limit DS?0 and setting

x1 ¼ x�1; x2 ¼ x�2, and a = a*, the gradient a* of the a� Ŝ

curve can be written in the following equation with

S�xi ¼ dSðx�i Þ=dx:

a� ¼ dŜða�Þ
da

¼ S�x1S�x2

S�x1 � S�x2

: ð18Þ

Thus, the difference between the gradients of the two

characteristic curves is

dYða�Þ
da

� a� ¼ �wða�Þ � S�x1S�x2

S�x1 � S�x2

¼ �wða�ÞðS�x1 � S�x2Þ þ S�x1S�x2

S�x1 � S�x2

: ð19Þ

Note that the terms in the fraction of the rightmost side also

appear in the stability conditions in Theorem 2. Therefore,

we can obtain the following theorem from Theorem 2 and

(19).

Theorem 4 A steady solution of local excitation with

R½u� ¼ ðx�1; x�2Þ is

(1) stable if S�x1 [ S�x2 and dYða�Þ=da [ a�,
(2) unstable if S�x1\S�x2 or dYða�Þ=da\a�.

S(x)
S(x)

S

x
1

a 

gradient

a - S curve

a

x

S+
∆S

x
1
+∆x

1 x
2

x
2
+∆x

2

S ∆S
∆a

a+∆a 

S
S+

∆S

a

b

Fig. 2 Relationship among variables x1, x2, a, and Ŝ, and their

perturbations denoted by Dx1, Dx2, Da, and DS that satisfy (13)–(16).

The solid curves in a and b show S(x) and the corresponding a� Ŝ
curve

S(x)

S(x)

S

S

x
1 x

2

S a - S curve

a (= x
2
- x

1
)

gradient α* Y(a)S

S*

a*
a

a - S curve

a

x

a

b

c

Fig. 1 A simple example of the a� Ŝ curve and the definition of a*

(a, b). External input stimuli S(x) (a) and the corresponding a� Ŝ
curve (b), where the four variables x1, x2, a, and Ŝ satisfy the three

conditions in Definition 1. c The a� Ŝ curve and Y(a). a* is defined as

the gradient of the a� Ŝ curve at the intersection point (a*, S*) of

these curves
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This theorem indicates that the stability of a local

excitation can be determined by the gradients of the

characteristic curves and external inputs.

4.3 The proposed method

We can see from Theorem 3 that the solutions of the steady

condition 1 correspond to the intersections of the a� Ŝ

curve with Y(a), and from Theorem 4 that the stability

conditions can be expressed by the gradients of the char-

acteristic curves. Here, we bring together these results and

construct a graphic analysis method to find the steady

solutions and their stability. The method is given below by

the three steps. An example of applying the method is

shown in the next section.

Step 1: Finding the solutions of the steady condi-

tion 1 Plot the a� Ŝ curve by the method in Appendix B,

and also plot the function Y(a) = h-W(a) on the same

plane. Let us denote the coordinates of all the intersection

points of both curves by (a�k ; S�k) (k = 1,…, M). Then, from

Definition 1, there exist x�1;k and x�2;k that satisfy a�k ¼
x�2;k � x�1;k and Sðx�1;kÞ ¼ Sðx�2;kÞ ¼ S�k for each k, so that we

denote a set of (x�1;k; x�2;k) by Hk. If we obtain Hk by the

method in Appendix C, ðx�1; x�2Þ 2
S

k Hk become the

solutions of the steady condition 1 from Theorem 3.

(The detailed proof is given in Appendix C.)

Step 2: Finding the steady solutions of local excita-

tion Plot S(x) and G½x; x�1;k; x
�
2;k� with ðx�1;k; x�2;kÞ 2 Hk on

the same coordinate system for each k. Then, from the

relation between the two curves, examine whether the steady

conditions 2 and 3 hold according to Theorem 1. If all the

steady conditions are satisfied, a steady local excitation

solution with R½u� ¼ ðx�1;k; x�2;kÞ exists from Theorem 1.

Step 3: Examining stability of the steady local excitation

solutions Let a�k be the gradient of the a� Ŝ curve at the

intersection point (a�k ; S�k), and S�x1 and S�x2 be the gradient

of SðxÞ at x ¼ x�1;k and x�2;k. Then, from Theorem 4, a steady

solution of local excitation with R½u� ¼ ðx�1;k; x�2;kÞ is

(1) stable if S�x1 [ S�x2 and dYða�kÞ=da [ a�k ,

(2) unstable if S�x1\S�x2 or dYða�kÞ=da\a�k .

5 Bistability and hysteresis in local excitation

Now we apply the graphic analysis method in the previous

section to the neural field receiving two nearby input

stimuli. This input condition is motivated by the studies in

Wilson and Cowan [1] and Enculescu and Bestehorn [6]

that have shown the existence of hysteretic behavior in the

field dynamics.

The previous studies [1, 6] have examined the field

activity in the presence of two suprathreshold inputs with

changing the relative distance between them as follows:

first, the two inputs are applied to the same position, which

leads to the excitation pattern of a single connected region.

In the next step, the two stimuli are moved slowly to the

opposite directions. Then, at a critical distance between the

stimuli, the single excitation pattern is divided into two

separated regions. Finally, the two inputs are moved again

toward each other, and the two excited regions fuse at a

critical distance. Their results show that the critical dis-

tance between the two inputs at which one excitation splits

into two is larger than the critical distance at which the two

excitations combine together.

Here we show that there exists a different type of hys-

teretic behavior with respect to the excited region of the

local excitation when a pair of suprathreshold and sub-

threshold stimuli are used. We consider the input condition

described as the sum of two unimodal inputs (Fig. 3a),

i.e., SðxÞ ¼ SAðxÞ þ SBðxÞ, where SAðxÞ ¼ max½�0:3ðx�
xAÞ2 þ 7:5; 0� and SBðxÞ ¼ max �0:75ðx� xBÞ2 þ 3; 0

h i
.

The stimulus threshold necessary for activation is set as

h = 6 (red line in Fig. 3a), which means that SA(x) and

SB(x) are suprathreshold and subthreshold inputs, respec-

tively. The connectivity function w(x) is assumed to be a

lateral-inhibitory function: wðxÞ ¼ 2:8 exp �x2=ð2 � 3:92Þ½ �
�1:1 exp �x2=ð2 � 9:62Þ½ �:

Figure 3 shows an example of applying the graphic

analysis method for xA = 10 and xB = 18. Figure 3b

shows the a� Ŝ curve (black lines) and Y(a) (red reline)

plotted on the same plane according to Step 1. Since there

exist five intersections P1 to P5 of these curves, five sets

of solutions (x�1;k; x�2;k) (or Hk) for k = 1,…, 5 satisfy the

steady condition 1. These solutions are depicted by plot-

ting the points ðx�1;k; Sðx�1;kÞÞ and ðx�2;k; Sðx�2;kÞÞ in Fig. 3c

by open circles with corresponding number k, where the

point ðx�2;k; Sðx�2;kÞÞ is at the right side of ðx�1;k; Sðx�1;kÞÞ for

each k.

Figure 3c shows the functions S(x) (black line) and

G½x; x�1;k; x
�
2;k�(k = 1,…, 5) (red lines) plotted according to

Step 2, where G½x; x�1;k; x
�
2;k� is denoted by Gk in the figure.

Note that, the points ðx�1;k; Sðx�1;kÞÞ and ðx�2;k; Sðx�2;kÞÞ are

intersections of S(x) and G½x; x�1;k; x
�
2;k� since x�1;k and x�2;k

satisfy the steady condition 1. From Theorem 1, all the

three steady conditions must be satisfied for the existence

of a steady local excitation solution. This means that S(x)

must be greater than G½x; x�1;k; x
�
2;k� only within a interval

(x�1;k; x�2;k). Since Fig. 3c indicates that the three steady

conditions hold for k = 3,4,5 but not for k = 1, 2, we can

understand that there exist three steady local excitation

solutions with R½u� ¼ ðx�1;k; x�2;kÞ (k = 3, 4, 5). In the figure,
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G½x; x�1;k; x
�
2;k� is plotted by a solid line when all the steady

conditions are satisfied and by a dashed line otherwise.

Finally, according to Step 3, we examine the stability of

the three steady local excitation solutions from Fig. 3b, c.

In Fig. 3b, we compare the gradient a�k and Yða�kÞ=da, i.e.

the gradient of the a� Ŝ curve and that of curve Y(a) at

each intersection Pk(k = 3, 4, 5). Then, we can find

dYða�kÞ=da [ a�k for k = 3, 5 and dYða�kÞ=da\a�k for k = 4.

In Fig. 3c, we can compare S�x1 and S�x2 that are the gradient

of S(x) at the points ðx�1;k; Sðx�1;kÞÞ and ðx�2;k; Sðx�2;kÞÞ denoted

by the open circles. Then, we find S�x1 [ S�x2 for k = 3, 4, 5.

Thus, we have dYða�kÞ=da [ a�k and S�x1 [ S�x2 for k = 3, 5

and dYða�kÞ=da\a�k and S�x1 [ S�x2 for k = 4. Therefore, we

see from Theorem 4 that the steady local excitation solu-

tions of R[u] = (x1,k
* , x2,k

* ) are stable for k = 3, 5 and

unstable for k = 4.

In Fig. 4, the membrane potential distribution u(x) for

the three steady local excitation solutions are plotted by

using (3) (thin solid lines) with the results of the numerical

simulations (dashed lines). In order to examine whether

similar results can be obtained for the continuous output

function case, we have used a sigmoid output function

f(u) = 1/[1 ? exp(-u/e)] with changing the values of e in

the simulations. While our method is exact for the limit of e
? 0, it provides good approximations for the cases with

small e. It should be noted that the argument here suggests

the requirement of relatively long interaction lengths

between neurons for the existence of bistable solutions.

The interaction range much shorter than the length of input
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Fig. 3 An example of applying the graphic analysis method to the

field with two adjacent inputs. a Input stimulus S(x) is bimodal and

composed of suprathreshold stimulus SA(x) and subthreshold stimulus

SB(x). The red horizontal line shows the stimulus threshold (h)

necessary for activation. b The a� Ŝ curve (black) and Y(a) (red).

The intersection points of the two curves are shown by the open
circles labeled as Pk(k = 1,…, 5). c Functions S(x) (black) and

G½x; x�1;k; x
�
2;k� (k = 1,…, 5), which is labeled as Gk (red). The open

circles show the points ðx�1;k; Sðx�1;kÞÞ and ðx�2;k; Sðx�2;kÞÞ with the

corresponding number k. The point ðx�1;k; Sðx�1;kÞÞ is on the left side of

ðx�2;k; Sðx�2;kÞÞ for each k. G½x; x�1;k; x
�
2;k� is plotted by a solid line when

all the steady conditions are satisfied for x1
* and x2

*, and by a dashed
line otherwise
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, S
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Fig. 4 Local excitation solutions obtained by the theory and

numerical simulations. The thin solid lines show the steady membrane

potential distribution u(x) obtained by the graphic analysis method in

Fig. 3, and the dashed lines depict the stable solutions found by the

numerical simulation. The solutions for k = 3, 4, and 5 are those

corresponding to the intersections P3, P4, and P5 in Fig. 3b,

respectively (see main text). In the simulation, the sigmoid output

function f ðuÞ ¼ 1= 1þ expð�u=eÞ½ � is used with e = 0.5 (red) and 1.5

(blue) for the solutions corresponding to k = 3, and with e = 0.1 (red)

and 0.5 (blue) for k = 5. Input stimulus S(x) is shown by a thick solid
line, which is the same as Fig. 3a. The solutions of k = 3, 5 are stable,

whereas that of k = 4 is unstable. The results obtained by the theory

and numerical simulations agree very well for small e
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stimuli, in which w(x) converges to 0 at smaller x, leads to

the disappearance of the stable and unstable intersection

points in Fig. 3b (P5 and P4, respectively), which are

required for the bistable solutions.

Since the bistable solutions seem to suggest the exis-

tence of hysteresis, we have examined the field activity by

moving the two inputs like the previous studies [1, 6]

(Fig. 5). The dashed lines depict the results of simulation,

and show the length of local excitation a = x2 - x1 when

the distance between the two inputs D = xB - xA is slowly

changed. The distance D is first increased from 0 to 12, and

then decreased again from 12 to 0. The figure shows that,

when D is within a certain range, there exist bistable local

excitation solutions and the length of local excitation is

large for the separating input case (increasing D) compared

to the merging input case (decreasing D). This hysteretic

behavior has been theoretically analyzed by applying the

graphic analysis method as shown in the symbols in Fig. 5.

The theoretical results show the existence of a continuous

set of several types of solutions. When the distance D

between the stimuli is either sufficiently large or small,

there exists only one stable local excitation solution (cir-

cle). However, within the bistable range of D, the solution

bifurcates into (1) two stable steady local excitation solu-

tions (circle), and (2) either an unstable steady local

excitation solution (triangle) or a solution satisfying only

the steady conditions 1 and 3 (9 mark). Note that, in cases

where the steady condition 2 is not satisfied, we cannot

obtain the corresponding local excitation solution. How-

ever, we can plot the value of a* = x2
* - x1

* from the

solutions x1
*, x2

* satisfying the steady condition 1. It should

be emphasized that, when unstable steady solutions dis-

appear within the bistable range of D, hidden solutions

satisfying only two of three steady conditions connect the

unstable solutions to shape a continuous line. The conti-

nuity of these solutions results from Theorem 3, which

indicates the existence of solutions satisfying at least the

steady condition 1 corresponding to the intersections of the

continuous characteristic curves. The membrane potential

distribution u(x) for the solutions I, II, and III in Fig. 5 are

shown in Fig. 4 by using the same labels.

6 Discussion

Local excitation solutions have been analyzed in a one-

dimensional neural field model in the presence of external

inputs. By reducing the conditions for the existence and

stability of the local excitation solutions into those for the

intersections and gradients of the characteristic functions,

we have proposed the graphic analysis method by which

steady solutions and their stability can be found. We have

applied this method to a neural field where both supra- and

subthreshold stimuli are applied simultaneously, and have

shown the existence of bistable local excitation solutions as

well as the hysteretic behavior of the excited region.

Amari [2] has studied the local excitation solutions in a

neural field with lateral-inhibitory connections and has

fully analyzed the conditions for the existence and stability

of solutions in the presence of spatially homogeneous

inputs. We have extended the results of Amari to a case

where the neural field receives inhomogeneous input

stimuli. This extension is fundamental for exploring the

response of cortical neurons, which are closely connected

with other cortical and subcortical cells and receive the

summation of various inputs at any time. The present

analysis does not require specific assumptions with regard

to the input function S(x) as far as the function is time-

independent; therefore, the existence and stability of

localized solutions can be found for any stationary input

pattern. Another characteristic feature of our analysis

method is that it can detect the hidden solutions that satisfy

only a part of the steady conditions in Theorem 1 and

L
en

gt
h 

of
 lo

ca
l e

xc
it

at
io

n

Distance between the stimuli

II

I

III

8

9

10

11

12

13

2 4 6 8 10 12

Stable steady solution (theory) 
Unstable steady solution (theory)

Numerical simulation
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Fig. 5 Hysteresis in local excitation. The length of local excitation

a = x2 - x1 has been investigated by changing the distance

D = xB - xA between the two inputs SA(x) and SB(x) in Fig. 3a. The

dashed lines with arrows are the result of numerical simulation where

the sigmoid output function (e = 0.1) is used. The three types of

symbols show the theoretical results of the graphic analysis method.

Each open circle and triangle indicates the length of a stable and

unstable steady local excitation solution, respectively. The 9 mark

corresponds to the solutions that satisfy the steady conditions 1 and 3

in Theorem 1, but not the steady condition 2. The steady membrane

potential distributions u(x) for the solutions denoted by I, II, and III

are the same as those in Fig. 4
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cannot be obtained by numerical simulations (9 mark in

Fig. 5). This has enabled the elucidation of the geometrical

structure of solutions for two moving inputs in Fig. 5,

which shows that two branches of stable solutions are

connected by the solutions comprised of unstable and

hidden ones. Our results have also revealed the existence of

bistable localized solutions with different lengths of exci-

tation (Figs. 4, 5), which do not exist under homogeneous

input conditions [2]. In more complicated input conditions

(e.g., in the presence of three input stimuli), the graphic

analysis method would predict an increase in the number of

intersections between the a� Ŝ curve and Y(a). Therefore,

more than two stable local excitation solutions can also

coexist.

The hysteretic pattern dynamics that we have shown is

quite different from that reported in previous studies [1, 6].

Wilson and Cowan [1] and Enculescu and Bestehorn [6]

have revealed the hysteretic pattern dynamics in one- and

two-dimensional fields, respectively, when the relative

distance between two suprathreshold stimuli is changed.

On the other hand, in our model, the hysteresis dynamics

has been elicited by using a pair of supra- and subthreshold

stimuli. Additionally, in our case, hysteresis requires a

relatively long interaction between neurons as mentioned

above, which is not necessary for the hysteresis in the case

of two suprathreshold stimuli [6]. This difference implies

that these two types of hysteretic behavior may arise from

different mechanisms of interplay between neurons. It will

be a theoretically challenging problem to study how the

qualitative feature of the field dynamics with two supra-

threshold stimuli is different from or similar to the

bifurcation diagram shown in Fig. 5. Furthermore, it is

worth noting that the hysteresis dynamics in our model

suggests a new experimental condition for inducing hys-

teresis in sensory perception. Previous studies [1, 6] have

explained the perceptual hysteresis observed in the Fender-

Julesz experiment [18] which shows that when the same

images are presented to two eyes with changing retinal

disparities, the disparity necessary for the breakaway of

fused images is larger than that required for the refusion of

the images. Based on our results, perceptual hysteresis may

be induced when visual images such as bars are presented

to one eye with a strong luminous intensity and to the other

eye with a considerably weaker intensity. In this case, we

predict that the subject would perceive that the width of the

bar becomes larger when the retinal disparities of the

images are increased than decreased within some range as

shown in Fig. 5.

It has been suggested that the spatially localized

excitation of cortical activity is correlated with several

aspects of higher-level cognitive processing. The self-

maintenance of local excitation has been proposed to

underlie the persistent activity observed in the prefrontal

cortex (PFC) neurons when an animal is holding items in

working memory [19–23]. The involvement of local

excitation in encoding sensory information is also sup-

ported by the observation that complex objects are

represented by the spatial combination of active and

inactive localized discharge pattern in the inferotemporal

cortex (ITC) [24, 25]. These studies suggest that the

appearance and disappearance of localized activity may

be regulated in association cortices of PFC and ITC,

which play a role in integrating feedforward inputs from

multiple sensory areas. Therefore, the proposed method

may be beneficial for understanding the basis of how

localized neuronal discharge in association areas repre-

sents the information transmitted by the activity of lower-

level cortical cells. Furthermore, the localized activity

may be linked to neuronal responses in the head-direction

neurons [26, 27] and feature selectivity in visual cortex

cells [28]. To elucidate how these cell activities are

modulated by the inputs from the environment, under-

standing of the behavior of localized excitation with

external stimuli seems profitable. Several recent studies

have also advanced the understanding of different types of

localized solutions, such as the solutions whose excited

region consists of N C 2 disjointed intervals [4, 5] and

those in two-dimensional fields [3, 8], by using neural

field models similar to ours. Thus, it would be intriguing

to combine our results with these studies to analyze the

existence and stability of stimulus-evoked excitations with

disjointed intervals or study whether an extended method

of graphic analysis is available for two-dimensional fields.
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Appendix A: Proof of Theorem 2

(1) When Sx1
* [ Sx2

* and wða�Þ S�x1 � S�x2

� �
þ S�x1S�x2\0

hold, we find C [ 0 in (10) by using ux1
* [ 0 and

ux2
* \ 0. Differentiating (3) with respect to x yields

d�uðxÞ
dx
¼ wðx� x�1Þ � wðx� x�2Þ þ

dSðxÞ
dx

: ðA:1Þ

Then, by substituting x = x1
* and x2

*, we obtain

u�x1 ¼ wð0Þ � wða�Þ þ S�x1; ðA:2Þ

u�x2 ¼ �wð0Þ þ wða�Þ þ S�x2: ðA:3Þ

From these equations, (9) can be transformed into
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B ¼ 1

su�x1u�x2

wð0Þ 2wða�Þ � S�x1 þ S�x2

� �
� 2wða�Þ2

h

þ 2 ðS�x1 � S�x2Þwða�Þ þ S�x1S�x2

� ��

¼ 1

su�x1u�x2

wð0Þ 2wða�Þ � S�x1 þ S�x2

� �
� 2wða�Þ2

h i

þ 2sC: ðA:4Þ

Hence, by using the relation

2wða�Þ � S�x1 þ S�x2\�
2S�x1S�x2

S�x1 � S�x2

� S�x1 þ S�x2

¼ � S�2x1 þ S�2x2

S�x1 � S�2x2

\0 ðA:5Þ

and the property of the connectivity w(0) [ 0, we can

find B [ 0. Therefore, both the coefficients B and C

of the characteristic function are positive, so that the

differential equation (8) is stable.

(2) When wða�Þ S�x1 � S�x2

� �
þ S�x1S�x2 [ 0 holds, we find

C \ 0 from (10) by using ux1
* [ 0 and ux2

* \ 0. Thus,

the system is unstable.

Furthermore, when Sx1
* [ Sx2

* and wða�Þ S�x1 � S�x2

� �
þ

S�x1S�x2� 0 hold, we find

wða�Þ� � S�x1S�x2

S�x1 � S�x2

: ðA:6Þ

Hence,

wða�Þ � S�x1� �
S�x1S�x2

S�x1 � S�x2

� S�x1 ¼ �
S�2x1

S�x1 � S�x2

� 0;

ðA:7Þ

wða�Þ þ S�x2� �
S�x1S�x2

S�x1 � S�x2

þ S�x2 ¼ �
S�2x2

S�x1 � S�x2

� 0:

ðA:8Þ

Note that at least either Sx1
* or Sx2

* must take a value

different from 0 because of Sx1
* \ Sx2

* . Therefore,

we obtain B \ 0 from (9), so that the system is

unstable.

Appendix B: The method for plotting the a� Ŝ curve

In this appendix, we show the method for plotting the a� Ŝ

curve from the function S(x) according to Definition 1.

First, we give some definitions.

Definition 2 We say that f(x) is a monotone increasing

(decreasing) function if f(x1) \ f(x2) (f(x1) [ f(x2) ) for any

x1, x2 with x1 \ x2 in its domain. We refer to a monotone

increasing or decreasing function as a monotone function.

We also say that f(x) is a constant function if f(x1) = f(x2)

for any x1 and x2 in its domain.

Definition 3 We define Si(x) (i = 1,…, N) to be functions

that satisfy the following three conditions, where a finite

interval [di, di?1] is the domain of Si(x). We refer to the

function Si(x) as a subfunction of S(x).

(1) Si(x) = S(x) for all i,

(2) Si(x) is either a monotone or constant function,

(3) The domain of the neural field [xmin, xmax] is covered

by the domain of subfunctions, i.e., d1 = xmin and

dN?1=xmax.

Definition 3 means the division of S(x) into N subfunctions

Si(x) (i = 1,…, N) such that each subfunction is either a

monotone or constant function. S1(x) - S7(x) in Fig. 6a

shows an example of the subfunctions for N = 7 corre-

sponding to S(x) in Fig. 3a.

Definition 4 We define Cij (i = 1,…, N, j = 1,…, N) to be

a set of (a; Ŝ) such that there exist x1 and x2 satisfying the

following relations:
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Fig. 6 The way of plotting the a� Ŝ curve. a According to Definition 3,

the subfunctions S1(x) - S7(x) are constructed from function S(x) in

Fig. 3a such that each subfunction is either a monotone or constant

function. b The a� Ŝ curve has been drawn by plotting Cij (i = 1,…, 7,

j = 1,…, 7) by using Theorem 5 from the subfunctions S1(x) - S7(x).

The line of Ŝ = 0 contains Cij for many pairs of i, j, but their labels

are omitted
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ð1Þ x1 2 Di; x2 2 Dj; ðB:1Þ

ð2Þ x1\x2; ðB:2Þ

ð3Þ Siðx1Þ ¼ Sjðx2Þ ¼ Ŝ; ðB:3Þ

ð4Þ a ¼ x2 � x1; ðB:4Þ

where Di:[di, di?1] is the domain of the subfunction S(x).

From Definitions 1 and 4, we can find that Cij is a subset of

the a� Ŝ curve and that the a� Ŝ curve is described asS
i;j Cij:

Definition 5 Let SLi
-1(S) and SHi

-1(S) be functions such that

S�1
Li ðSÞ ¼

S�1
i ðSÞ; if Si is a monotone function,

di; if Si is a constant function;

(
ðB:5Þ

S�1
Hi ðSÞ ¼

S�1
i ðSÞ; if Si is a monotone function,

diþ1; if Si is a constant function;

(
ðB:6Þ

where Si
-1(S) denotes an inverse function of Si(x).

From the above definitions, we have the following

theorem that gives the explicit description of Cij.

Theorem 5 Let Ri be the range of a subfunction Si(x).

Then, Cij is described as follows:

(1) When both Si and Sj (i \ j) are monotone functions

and Ri \ Rj=/,

Cij ¼ ða; ŜÞja ¼ S�1
j ðŜÞ � S�1

i ðŜÞ; a [ 0; Ŝ 2 Ri \ Rj

n o
;

ðB:7Þ

(2) When Si and/or Sj (i B j) are constant functions and

Ri \ Rj=/,

Cij ¼ ða; ŜÞja 2 ½S�1
Lj ðScÞ � S�1

Hi ðScÞ; S�1
Hj ðScÞ � S�1

Li ðScÞ�;
n

a [ 0; Ŝ ¼ Sc

�
; ðB:8Þ

where Sc is defined such that {Sc} = Ri \ Rj,

(3) Otherwise, Cij = /.

Proof of Theorem 5 We can prove Cij = / from Defini-

tion 4 in case of (1) i [ j, (2) Ri \ Rj=/, and (3) Si is a

monotone function and i = j. Thus, by excluding these

cases, we consider the following five cases,

Case A: Both Si and Sj are monotone functions, i \ j,

and Ri \ Rj=/,

Case B: Si is a monotone function, Sj is a constant

function, i \ j, and Ri \ Rj=/,

Case C: Si is a constant function, Sj is a monotone

function, i \ j, and Ri \ Rj=/,

Case D: Si is a constant function and i = j,

Case E: Both Si and Sj are constant functions, i \ j, and

Ri \ Rj=/.

Then, for each case, Cij is given by the following lemma.

(Proof of the lemma is given later.)

Lemma 1 Let Sci be the value of a subfunction Si(x) when

Si(x) is a constant function. Then, for each case, Cij is

described as follows:

Cij ¼ ða; ŜÞja ¼ S�1
j ðŜÞ � S�1

i ðŜÞ; a [ 0; Ŝ 2 Ri \ Rj

n o
for Case A;

ðB:9Þ

Cij ¼ ða; ŜÞja 2 ½dj � S�1
i ðScjÞ; djþ1 � S�1

i ðScjÞ�;
�

a [ 0; Ŝ ¼ Scj

�
for Case B;

ðB:10Þ

Cij ¼ ða; ŜÞja 2 ½S�1
j ðSciÞ � diþ1; S�1

j ðSciÞ � di�;
n

a [ 0; Ŝ ¼ Sci

�
for Case C;

ðB:11Þ

Cij ¼ ða; ŜÞja 2 ð0; diþ1 � di�; Ŝ ¼ Sci

� �
for Case D;

ðB:12Þ

Cij ¼ ða; ŜÞja 2 ½dj � diþ1; djþ1 � di�; a [ 0; Ŝ ¼ Sci

� �
for Case E:

ðB:13Þ

From Lemma 1, we can see that Cij for Cases A is the same

as (B.7), and that Cij for Cases B-E are summarized as

(B.8) by using the notations of SLi
-1 and SHi

-1 in Definition 5,

so that we obtain Theorem 5. h

The proof of Lemma 1 is given as follows.

Proof of Lemma 1 Since proofs of Cases A - E are

similar, we show only proof of Case A and omit proofs of

the other cases.

If ða; ŜÞ 2 Cij, there exist x1 and x2 that satisfy (B.1)–

(B.4) from the definition of Cij. We can find Ŝ 2 Ri \ Rj

from (B.3) and a ¼ S�1
j ðŜÞ � S�1

i ðŜÞ from (B.3) and (B.4).

a [ 0 also holds from (B.2) and (B.4), so that

ða; ŜÞ 2 ða; ŜÞja ¼ S�1
j ðŜÞ � S�1

i ðŜÞ; a [ 0; Ŝ 2 Ri \ Rj

n o
:

ðB:14Þ

On the contrary, if (B.14) holds, we can obtain (B.1)–(B.4)

by setting x1 ¼ S�1
i ðŜÞ and x2 ¼ S�1

j ðŜÞ. Thus, we have

ða; ŜÞ 2 Cij. h

Since the a� Ŝ curve is
S

i;j Cij as stated above, we can

draw the a� Ŝ curve by plotting points ða; ŜÞ 2 Cij for
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every i, j with Cij =/ by using Theorem 5. Figure 6b

shows how the a� Ŝ curve is composed of Cij, where each

curve Cij has been obtained from Si(x) and Sj(x) depicted in

Fig. 6a.

Appendix C: The method for finding solutions

of the steady condition 1

Here we show how the solutions of the steady condition 1

can be obtained when the intersections of the a� Ŝ curve

with Y(a) are given. All the definitions in Appendix B

(Definitions 2–5) are also used in this appendix.

As mentioned in Appendix B, the a� Ŝ curve is written

as
S

i;j Cij by using Cij in Definition 4. Therefore, when a

point ða; ŜÞ lies on the a� Ŝ curve, ða; ŜÞ 2 Cij holds for

some pair of i, j, and there exist x1 and x2 satisfying (B.1)–

(B.4). Hence, we denote a set of these variables (x1, x2) by

Hij½a; Ŝ�. The following theorem shows the explicit

description of Hij½a; Ŝ�.

Theorem 6 Hij½a; Ŝ� is given as follows:

(1) When Si and/or Sj are monotone functions,

Hij½a; Ŝ� ¼ ðx1; x2Þjx1 ¼ max S�1
Li ðŜÞ; S�1

Lj ðŜÞ � a
	 


;
n

x2 ¼ x1 þ ag; ðC:1Þ

(2) When both Si and Sj are constant functions,

Hij½a; Ŝ� ¼ ðx1; x2Þjx1 2f

max S�1
Li ðŜÞ; S�1

Lj ðŜÞ � a
	 


; min S�1
Hi ðŜÞ; S�1

Hj ðŜÞ � a
	 
h i

;

x2 ¼ x1 þ ag; ðC:2Þ

where Si and Sj are the subfunctions defined in Definition 3.

SLi
-1 and SHi

-1 are the functions defined in Definition 5.

Proof of Theorem 6 We present the following lemma.

(The proof of this lemma is shown later.)

Lemma 2 Consider the same classification as Cases A–E

shown in proof of Theorem 5 in Appendix B, then Hij½a; Ŝ�
for each case is given as follows:

Hij½a; Ŝ� ¼ ðx1; x2Þjx1 ¼ S�1
i ðŜÞ; x2 ¼ x1 þ a

� �
for Case A;

ðC:3Þ

Hij½a; Ŝ� ¼ ðx1; x2Þjx1 ¼ S�1
i ðŜÞ; x2 ¼ x1 þ a

� �
for Case B;

ðC:4Þ

Hij½a; Ŝ� ¼ ðx1; x2Þjx1 ¼ S�1
j ðŜÞ � a; x2 ¼ x1 þ a

n o

for Case C; ðC:5Þ

Hij½a; Ŝ� ¼ ðx1; x2Þjx1 2 ½di; diþ1 � a�; x2 ¼ x1 þ af g
for Case D; ðC:6Þ

Hij½a; Ŝ� ¼ ðx1; x2Þjx1 2 ½maxðdi; dj � aÞ;
�

minðdiþ1; djþ1 � aÞ�; x2 ¼ x1 þ a
�

for Case E; ðC:7Þ

where [di, di?1] is the domain of the subfunction Si(x) in

Definition 3.

If we use the notations of SLi
-1 and SHi

-1 in Definition 5,

then Cases A–E in Lemma 2 can be summarized as

Theorem 6. h

The proof of Lemma 2 is given as follows.

Proof of Lemma 2 Since proofs of Cases A–E are similar,

we show only proof of Case A and omit the proofs of the

other cases. From ða; ŜÞ 2 Cij and Lemma 1, we have

a ¼ S�1
j ðŜÞ � S�1

i ðŜÞ; ðC:8Þ

a [ 0; ðC:9Þ

Ŝ 2 Ri \ Rj: ðC:10Þ

If ðx1; x2Þ 2 Hij½a; Ŝ�, we find x1 ¼ S�1
i ðŜÞ and x2 ¼ S�1

j ðŜÞ
from (B.3). By using (C.8), we have x2 = x1 ? a, so that

ðx1; x2Þ 2 ðx1; x2Þjx1 ¼ S�1
i ðŜÞ; x2 ¼ x1 þ a

� �
: ðC:11Þ

On the contrary, if (C.11) holds, we can prove that (B.1)–

(B.4) also hold by using (C.8) and (C.9). Thus, we obtain

ðx1; x2Þ 2 Hij½a; Ŝ�: h

Consider an intersection point (ak
*, Sk

*) of the a� Ŝ curve

with Y(a) as in Step 1 of the graphic analysis method. Let

us define ik and jk to be the integers satisfying (ak
*,

Sk
*) [ Cik jk , and set Hk ¼ Hikjk ½a�k ; S�k �. Then, from the def-

inition of Hij½a; Ŝ�, we can find ak
* = x2,k

* - x1,k
* and

S(x1,k
* ) = S(x2,k

* ) = Sk
* for (x1,k

* , x2,k
* ) [ Hk. Since we can

have the following corollary from Theorem 3, x�1; x
�
2

� �
2S

k Hk are the solutions of the steady condition 1 in

Theorem 1.

Corollary 1 The steady condition 1 holds for x1
*, x2

* if and

only if

ðx�1; x�2Þ 2
[

k

Hk:

Proof of Corollary 1 If the steady condition 1 holds for

x1
*, x2

* (x1
* \ x2

*), the point (a*, S*) with a* = x2
* - x1

* and

S* = S(x2
*) - S(x1

*) is an intersection of the a� Ŝ curve

with Y(a) from Theorem 3.

We find Siðx�1Þ ¼ Sjðx�2Þ ¼ S� with i, j satisfying x1
* [ Di

and x2
* [ Dj, where Si and Di (i = 1,…, N) denote the

subfunction and its domain in Definition 3. Hence, (a*,

S*) [ Cij holds from Definition 4. Since a* = ak
*, S* = Sk

*,

i = ik, and j = jk hold for some k, we can obtain

x�1 2 Dik ; x�2 2 Djk ; ðC:12Þ

Sikðx�1Þ ¼ Sjkðx�2Þ ¼ S�k ; ðC:13Þ
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a�k ¼ x�2 � x�1: ðC:14Þ

Therefore, we can find ðx�1; x�2Þ 2 Hk.

On the contrary, if ðx�1; x�2Þ 2 Hk holds for some k,

(C.13) and (C.14) hold. Since ða�k ; S�kÞ lies on an intersec-

tion of the a� Ŝ curve with Y(a), we obtain the steady

condition 1 from Theorem 3. h

Since the elements of Hk ¼ Hik jk ½a�k ; S�k � can be obtained

by using Theorem 6 for each k, we can actually find the

solutions of the steady condition 1. Note that, Theorem 6

indicates that, if both Sik and Sjk are constant functions, Hk

contains infinite number of elements. Thus, in this case, we

need to pick up some elements ðx�1;k; x�2;kÞ 2 Hk by the

required accuracy in order to plot G½x; x�1;k; x
�
2;k� in Step 2 of

the graphic analysis method.
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